
IRTlib Documentation: Software for the administration and
delivery of computer-based assessments

Ulf Kroehne

Laste Change: 20th November, 2024

Suggested citation:

Kroehne, U. (2023). IRTlib Documentation: Software for the administration and delivery of computer-
based assessments [IRTlib Dokumentation: Software für die Verwaltung und Auslieferung comput-
ergestützterAssessments]. DIPF, Frankfurt amMain, Germany. https://doi.org/10.5281/zenodo.10441352

Table of contents

1 IRTlib Software 5

2 Download & Installation 5
2.1 Offline (Windows) . 5

2.1.1 Study Preparation with Offline Editor . 6
2.1.2 Study Execution with Offline Player . 6

2.2 Online (Docker) . 6

I Vorbereitung / Preparation 7

3 Vorbereitung: Übersicht / Preparation: Overview 8
3.1 Embedded Programme Help . 9
3.2 Preparation of CBA ItemBuilder Content . 9

3.2.1 Entry Point (Task) . 9
3.2.2 Display Bhaviour (Scaling Options) . 10
3.2.3 Definition of the Scoring (Results Data) . 11
3.2.4 Integrated Multimedia Content (Resources) . 11

4 Vorbereitung Studien / Preparation Studies 12
4.1 Study administration . 12

4.1.1 Creating Studies . 12
4.1.2 Further functions and notes . 13

4.2 Basic configurations . 14
4.2.1 Settings for the Study . 14

4.3 Access to studies (login) . 15
4.3.1 Configuration of the login . 16

4.4 Display of assessment content . 17
4.4.1 Display Settings . 18
4.4.2 Scaling and Alignment . 20

4.5 Menu for test administrators . 21
4.5.1 Concept of a Test Administrator Menu (Menu for Test Administrators) 21

4.6 Completion of surveys . 23
4.6.1 Session and End of Session . 23

5 Vorbereitung: Erhebungsteile / Preparation: Study Parts 25
5.1 Survey part administration . 25

5.1.1 Create Survey Part . 25
5.1.2 Basic Configuration for Survey Parts . 27

5.2 Insert assessment content (items) . 27
5.2.1 Configure items . 28

5.3 Processing time . 29
5.3.1 Define Time Limit . 29
5.3.2 Items After a Time Limit . 30
5.3.3 Items Before a Time Limit . 31

5.4 Variables . 31
5.5 Codebook . 32
5.6 ItemPool . 32

2

5.7 Routing within survey parts . 32
5.7.1 Summary of Routing within Survey Parts . 32
5.7.2 Use of Blockly for flow control . 37
5.7.3 Advanced Blockly usage . 41
5.7.4 Commenting on Blockly code . 59
5.7.5 Presentation of Blockly code . 60

5.8 Routing between survey parts . 62
5.8.1 Summary of Routing between Survey Parts . 63

II Datenerhebung / Data Collection 64

6 Datenerhebung: Übersicht / Data Collection: Overview 65
6.1 Overview: Steps for using an IRTlib Player for Data Collections 65

7 Datenerhebung: Veröffentlichen & Exportieren / Data Collection: Publish & Export 66
7.1 Checklist before publishing . 67
7.2 Publish & Export . 67

7.2.1 Publish . 68

8 Datenerhebung: In IRTlib Player Importieren / Data Collection: Import into IRTlib Player 69
8.1 Import Configuration . 69

8.1.1 Automatic Import . 69
8.1.2 Manual Import . 70

8.2 Configure deliveries . 72
8.2.1 Desktop version (Windows) . 73
8.2.2 Local server (Windows) . 74
8.2.3 Online version (Docker) . 74

8.3 Testing and Releasing Deliveries . 75
8.3.1 Suggested Test Plans . 76
8.3.2 Carry out Data Collections . 77

9 Datenerhebung: Datenaufbereitung / Data Collection: Data Post-Processing 78
9.1 Data Preparation . 78

9.1.1 Data retrieval with LogFSM . 78
9.1.2 Data Retrieval via the Command Line . 79
9.1.3 Result Data . 80
9.1.4 Log Data . 80
9.1.5 Files in the raw data archives . 80

III Allgemein / General 83

10 Einstellungen / Settings 84
10.1 Overview . 84

10.1.1 Settings . 84
10.1.2 About the Programme . 84

10.2 Runtimes . 84
10.2.1 Runtimes . 84

11 Github Repositorien / Github Repositories 88
11.1 IRTLib Software . 88

11.1.1 Download . 88
11.2 CBA ItemBuilder . 88

11.2.1 Download . 88
11.2.2 Source Code . 88
11.2.3 Documentation . 89

3

12 Über / About 90
12.1 Acknowledgements . 90
12.2 Development . 90

4

1 IRTlib Software

IRTlib is a software for the delivery of computer-based tests. The software consists of two compo-
nents:

• IRTLib Editor : A software for test authors, which is used to configure Studies.
• IRTlib Player : A software for data collections, with which target persons work on tasks that are
configured in the form of a Study.

Instructions for installing and setting up both programmes for initial use can be found under Download
& Installation.

Before using the IRTlib Software to configure and create deliveries, the assessment content (tasks, in-
structions, intermediate screens, etc.) must be created in the form of individual Tasks using the CBA
ItemBuilder.

• The CBA ItemBuilder can be downloaded here: www.itembuilder.de/software

• An interactive documentation of the CBA ItemBuilder is available here: cba.itembuilder.de

Suggested Citation:

Kroehne, U. (2023). Open Computer-based Assessment with the CBA ItemBuilder. DIPF,
Frankfurt am Main, Germany. https://doi.org/10.5281/zenodo.10359757

The development of the CBA ItemBuilder and the IRTlib Software is coordinated by the Centre for
Technology-Based Assessment (TBA) at the DIPF | Leibniz Institute for Research and Information in
Education.

2 Download & Installation

The IRTlib software is provided for offline use (currently forWindows operating systems) and for online
use (in the form of Docker containers).

2.1 Offline (Windows)

The IRTlib software (IRTlib Editor and IRTlib Player) for offline use can beobtained anddownloaded from
the [Releases] section of the repository https://github.com/DIPFtba/IRTlibDeploymentSoftware. Two
ZIP archives are available for download in the Releases section.

TestApp.Editor.Desktop.exe: Is in TestApp.Editor.Desktop.zip and must be started to use
the IRTlib Editor.

TestApp.Player.Desktop.exe: Is included in TestApp.Player.Desktop.zip andmust be started
to use the IRTlib Player.

5

download.qmd
download.qmd
https://www.itembuilder.de/software
https://cba.itembuilder.de
https://tba.dipf.de/de/ueber-tba/
https://www.dipf.de/
https://github.com/DIPFtba/IRTlibDeploymentSoftware
https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases

Note: Versions from the current development as Preview.

Note that the latest build can be found in the Preview section of the Release section of the repos-
itory. Preview versions are the latest version of the software, after the last published version of
the IRTlib Software. To obtain reproducible results, published versions should always be used.

Note: Warning message at programme start

The automatically created preview versions of the IRTlib Editor and IRTlib Player are not signed.
A warning message from the operating system must be accepted before the programmes can be
executed. Depending on the configuration of the operating system, the executable files of the
IRTlib software can also be classified as unknown and additionally warned against their use.

2.1.1 Study Preparation with Offline Editor

The IRTlib Editor for offline use is provided as a ZIP archive (e.g. TestApp.Editor.Desktop.zip),
which must be unpacked. After unpacking the editor, the application TestApp.Editor.Desktop.exe
can be started on a Windows device.

The sections Preparation > Overview, Preparation > Studies and Preparation > Survey parts document
how to prepare and configure data surveys with the help of CBA ItemBuilder items.

2.1.2 Study Execution with Offline Player

The IRTlib Player is also available as aWindows application for offline use and is provided as a ZIP archive
(e.g. TestApp.Player.Desktop.zip). After unpacking the IRTlib Player, a published study configura-
tion is required that is to be used for data collection.

After adding the contents of a published study provided as study configuration, the executable file
TestApp.Player.Desktop.exe can be started (either with or without start parameters).

• Kiosk Mode: The IRTlib Player can be used directly for data collection via the executable file
TestApp.Player.Desktop.exe on the computer on which it is running locally. The Study can
be configured so that it is displayed in a Kiosk Mode on one screen and can only be terminated via
the Task Manager or the Test Manager Menu (see Full Screen Mode in the section Configuration
for display).

• Local Server: The IRTlib Player can also be run as a local server. After starting the programme
TestApp.Player.Server.exe, a configured Study can also be delivered via Webbrowser or
other browsers with Kiosk Mode (e.g. the Safe Exam Browser). With this configuration, data can
be collected, for example, in schools without an internet connection but with a notebook acting
as a bring-in server.

The sections Data collection > Overview, Data collection > Publish & export and Data collection > Inte-
gration & delivery document how data collection can be carried out using the IRTlib Player in the various
constellations.

2.2 Online (Docker)

The IRTlib software (IRTlib Editor and IRTlib Player) for online use can be obtained as aDocker container.
An example can be found at https://github.com/DIPFtba/IRTlibDeploymentSoftware.

6

https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases/tag/preview-231025
https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases
https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases
preparation-overview.qmd
preparation-studies.qmd
preparation-parts.qmd
https://safeexambrowser.org/
data-collection-overview.qmd
data-collection-publish-and-export.qmd
data-collection-player-integration.qmd
data-collection-player-integration.qmd
https://github.com/DIPFtba/IRTlibDeploymentSoftware

To use theDocker container, it is recommended to clone the repository on the target device and execute
the command ./start.sh in the docker folder (requires installed docker and docker compose) to
start the software.

If nothing is changed in the docker-compose.yml file, the editor is accessible via port 8002 and the
player software via port 8001.

The section Data collection > Integration & delivery contains further information on using the Docker
containers.

Part I

Vorbereitung / Preparation

7

data-collection-player-integration.qmd

3 Vorbereitung: Übersicht / Preparation: Overview

The preparation of a computer-based assessment based on CBA ItemBuilder content begins with the
use of the IRTlib Editor to create a study configuration. This usually involves the following steps:

Optional: Using a Runtime for CBA ItemBuilder before version 9.9?

• Requirement: Check the availability of the Runtime. The IRTlib Editor can be used to pre-
pare assessments with content created using the CBA ItemBuilder. To use CBA ItemBuilder
Tasks stored in project files, a runtime (i.e. the files main.*.js and main.*.css) is required
in the version that corresponds exactly to the version of the CBA ItemBuilder used to create
the items (e.g. 9.9.0). Before using the IRTLib-Editor, make sure that the required Runtime
is included or import the runtime files (see section Settings for details).

Note: When using CBA ItemBuilder items from version 9.9, this step is generally not necessary.

• Creating a new Study: The IRTlib Editor is used to configure so-called Studies. The versions of
studies canbe tracked in theeditor, studies canbepublished there (i.e. sealed for data collections).
To start creating content with the IRTlib Editor, a study must first be created (see section Studies
for‚ details).

Note: Creating a Study is always necessary.

Note that at least one Study must be defined in the IRTlib Editor before a study configuration can
be used for data collection with an IRTlib Player.

• Define Basic Configurations for Study (Info): Basic configurations related to the content of a
prepared study include the study name and description, login mode, display configuration, test
administrator menu, and how to proceed after completing all content defined in a study (see
Studies section for more details).

• Creating a new Survey Part: Each Study consists of one or more Survey Parts. Survey Parts are
considered to be building blocks of assessments that are administered together, such as items
from a particular domain. Survey Parts of type CBA ItemBuilder can be used to administer CBA
ItemBuilder tasks in a linear sequence or with Blockly-based routing.

Note: Creating a Survey Part is always necessary.

Note that each Study requires at least one Survey Part defined in the IRTlib Editor before a Study
configuration can be used for data collection with an IRTlib Player.

• Configure basic settings for survey part (Info): A Survey Part of type CBA ItemBuilder is based
on a set of CBA ItemBuilder -Tasks. Each CBA ItemBuilder -project file requires at least one task,
but projects with multiple tasks are also supported. If CBA ItemBuilder content with a common
time limit is to be administered across tasks, assessment sections allow the assignment of tasks
to a structure that distinguishes assessment content that is administered before a time-limited
section (e.g. instructions, in the task section). e.g. instructions, in the section preparation-parts),
content that is administered after a time-limited section (e.g. acknowledgements, in the section
post-parts) and tasks with limited time in between (items, see section [preparation-parts.qmd]).

8

settings.qmd
settings.qmd
preparation-studies.qmd
preparation-studies.qmd

• Add Items: To finalise the definition of a Survey Part, the CBA ItemBuilder project files must be
imported into the Items section. By default, it is assumed that the order of the CBA ItemBuilder -
Tasks is linear. However, if Routing is enabled for a study section, the Blockly-based sequence
definition can be used to implement different test designs (e.g. multiple booklets, multi-stage
tests, etc.).

3.1 Embedded Programme Help

For the use of the IRTlib Editor, a programme help is integrated directly into the application, which can
be displayed via the small ? symbol in the top right-hand corner.

Figure 3.1: Example of the IRTlib Editor with embedded help

Embedded Programm Help

The contents of these help pages from the IRTlib Editor are integrated into this IRTlib Documenta-
tion and are always displayed in this frame with the title Embedded Programme Help.

3.2 Preparation of CBA ItemBuilder Content

The IRTlib Software is required to display the assessment content created with the CBA ItemBuilder and
to use CBA ItemBuilder content for data collections. The project files (ZIP archives) that can be created
with the CBA ItemBuilder must be available for this.

3.2.1 Entry Point (Task)

Each CBA ItemBuilder project file must define at least one task. Only tasks can be used in the IRTlib
software. It is easy to check that a task is fully defined in the Preview of the CBA ItemBuilder :

9

Figure 3.2: Example from CBA ItemBuilder to request a Preview for a Task

The IRTlib software requires defined tasks.

Assessment content can be assembled from individual Tasks using the IRTlib Software. The se-
quence of Tasks can be defined statically as a linear sequence or as a programmed sequence in
Blockly. No individual pages within CBA ItemBuilder -Tasks can be controlled from the IRTlib Soft-
ware.

CBA ItemBuilder -Project files which can only be displayed via the Project or Page option in the Preview
cannot be used in the IRTlib Software.

3.2.2 Display Bhaviour (Scaling Options)

The Preview of the CBA ItemBuilder can also be used to check whether the assessment contents are dis-
played in the desired scaling, which can be set under Scaling Options, according to the requirements.

Figure 3.3: Settings for Scaling Options from CBA ItemBuilder -Preview

Settings similar to Preview can be defined in the IRTlib Editor for the display settings of a Study (see
section Studies).

10

preparation-studies.qmd

3.2.3 Definition of the Scoring (Results Data)

The IRTlib software is designed to collect data with the help of CBA ItemBuilder -Task. What result vari-
ables are saved from the processing of a task can be defined by item authors in the scoring definition of
a task.

The scoring must already be defined in the CBA ItemBuilder.

The result variables defined as Classes are saved from the processing of Tasks, the values of which
can either be individualHits or the transfer of information using the so-called ResultText operator
in the CBA ItemBuilder.

Using the built-in Scoring Debug Window, the scoring of individual CBA ItemBuider tasks should already
be checked in the CBA ItemBuilder before the assessment contents are combined into studies with one
or more survey parts using the IRTlib software. Further information on suggested checks is formulated
in the section Deliveries Testing and Release.

Log data is collected automatically.

Without further configuration, log data is automatically recorded in the assessment content cre-
ated with the CBA ItemBuilder and collected via the IRTlib software.

3.2.4 Integrated Multimedia Content (Resources)

The assessment content created with the CBA ItemBuilder can contain multimedia content (images,
videos, audio files). Images and videos are displayed in a size that is used in the corresponding com-
ponent of the CBA ItemBuilder in the Page Editor. Images, videos and audio files are saved as resources
in the project files as soon as they have been inserted via theResource Browser. Unused resources remain
in the project files.

File size of CBA ItemBuilder project files should be as small as possible

The file size of CBA ItemBuilder project files is particularly relevant for use in online deliveries and
should be kept as small as possible.

Before using CBA ItemBuilder -project files, it is recommended to consider the following points:

• Images and videos only in the required size: Images and videos can be reduced to the size (width
and height) in which they are actually used in CBA ItemBuilder -Projects without any loss of quality.

• Compress images if possible: Without changing the image size, images can often be further re-
duced in file size.

• Compress videos if possible: Without changing the video, videos can often be further reduced in
file size.

• Audio not in the highest quality: If not necessary, audio files should be reduced in quality so that
they still sound acceptable but are optimised in terms of transmission times.

• Remove unused resources: The CBA ItemBuilder provides a button in the Resource Browser to au-
tomatically remove unused resources. This function should be used at the end so that the project
files do not contain any unnecessary resources.

Careful handling of resources and optimisation of the file size of CBA ItemBuilder project files can be de-
cisive for a smooth and trouble-free assessment, which can be delivered online with the IRTlib software
and used, for example, via mobile devices with limited internet bandwidth.

11

data-collection-player-integration.qmd

4 Vorbereitung Studien / Preparation Studies

Configurations that are created with the IRTlib editor are summarized in so-called studies. A study is
intended to summarize the assessment content that is administered in a survey or session.

4.1 Study administration

After starting the IRTlib Editor, the Studies view is displayed. In this view, the first step to prepare a new
configuration is to add a new study:

https://youtu.be/7VKf6U3oeM4

The created studies appear as cards in the Studies view. Note that the order in which the studies are
displayed in the Study view does not matter.

Detailed instructions on how to create a study can be found here in the embedded help:

Embedded program help

4.1.1 Creating Studies

The IRTLib Editor is used to create configurations for studies, which can then be used in an IRTLib
Player to carry out computer-based assessments.

4.1.1.1 How do I get started?

To start configuring a study, click on the plus icon at the bottom right:

Then enter a name and optionally a description in the Create new study dialogue.
Make sure that only letters (upper and lower case), numbers and a _ are allowed for the name.

Then click on Save.
If required, you can also assign an image to a study using the following icon. This image is used in
the IRTLib Editor for this study:

12

https://youtu.be/7VKf6U3oeM4

4.1.1.2 What’s next?

Created studies are displayed as tiles in the study overview:

To continue with the creation and configuration of a study, click on the small edit icon:

4.1.2 Further functions and notes

• Delete Study: You can also delete studies using the recycle bin icon. The deletion of studies
cannot be undone:

• Change Language: The menu item Settings takes you to the item General settings, where
you can change the language of the IRTLib Editor.

13

This item also gives you access to the CBA ItemBuilder Runtimes available in the IRTLib Editor (sup-
port for the use of CBA ItemBuilder content created with different versions of the programme).

4.2 Basic configurations

The configurationsof aparticular study, including versioningandpublishing, aremanagedwithin studies
(i.e. after opening a study for editing by clicking on the edit icon at the bottom right of the card).

Created studies that are displayed in the IRTlib Editor in the Studies view can be opened for editing.

Detailed information on the basic configuration of a study can be found here in the embedded help:

Embedded program help

4.2.1 Settings for the Study

• Name: How should the study be named? Make sure that only letters (upper and lower case),
numbers and a _ are allowed for the name.

• Description: This optional field is provided so that you can enter a detailed description of
the study. Special characters and umlauts etc. can also be entered here.

• Activate Routing for Survey Parts: Studies consist of one or more survey parts. The survey
parts are administered as a linear sequence by default. If the option Enable Routing for
Survey Parts is selected, the order of the Survey Parts can be defined with Blockly-based
routing. This enables dynamic sequences of Survey Parts, whereby call parameters of the
study can also be used, for example, to assign different sequences.

• Check screen size: In surveyswhere the screen size is not known, this option can be used to
compare the size of objects (EC card, banknote, ID card) with representations on the screen.

The device check is carried out with the following dialogue:

14

If the option Force Suitable Screen Size (in the Display section) is not activated, test
processing can still be started. If the resolution is too small, the following dialogue is
displayed:

Note: This option is currently not configurable.

If changed settings are to be retained, the changes must be saved using the disc symbol. Other-
wise, the discard icon can be used:

4.3 Access to studies (login)

The IRTlib software supports various ways in which people (test participants, respondents, …) can au-
thenticate themselves for an assessment. The configurations include two aspects:

• Login mode: Is access required (login, login+password, passphrases/token) or not? And if creden-
tials are required, what are valid values?

• Login source: How is the login information retrieved (direct input on the platform, CBA Item-
Builder item, ….) or passed (login parameter or call parameter)?

Detailed information on the configuration of the login of a study can be found here in the embedded
help:

15

Embedded program help

4.3.1 Configuration of the login

In the Login section, you can configure how test participants who start an assessment (either by
calling up a link in a browser that refers to the online IRTlib Player or by starting the offline IRTlib
Player) are to be identified or authenticated.

• Login Mode: The IRTlib Software supports various Login Modes.

– Random identifier : When a session is started for the first time, an identifier is gener-
ated in this Login Mode. This random but unique character string (a so-called UUID,
i.e. a Universally Unique Identifier) is used as a personal identifier in all data (i.e. result
data) and all other stored data (e.g., log data/trace data, snapshot data, etc.).

– Username: If test participants are expected to identify themselves by a unique string
(e.g. a number or text used as an access identifier), a Study can be configured with the
Login Mode username. Access to the assessment is then only possible if the character
string entered as username is valid. The underlying idea is that the study configuration
is loaded with a list of valid usernames and that a test participant must enter a valid
username before he or she can start the assessment. Only authenticated test takers
can access the assessment content defined as Study and answer the tasks or questions.

– User Name and Password : If not only valid usernames but also a password is to be
used in a Study to authenticate test takers, the Login Mode Username and Password
allows a username and password to be entered. Analogue to username, both pieces of
information must then be stored in the study configuration.

– Access Token: If the valid user names are not to be saved in the study configuration, the
option Access Token can be used. Each token that corresponds to a defined schema is
then accepted and used as an identifier for the test participants.

• Storage for Session Data: In the case of online deliveries, an assessment can be continued
after an interruption. This functionality is also required, for example, if the page is reloaded
in the browser (e.g. by forcing a Reload/F5, or by closing and reopening the URL). To ensure
that sessions originating from the same person (i.e. from the same browser) can also be
continued, the software can be configured so that the identifier is saved in the client.

• Valid Values: The IRTlib Software provides the following credential validation mechanisms
for the Login Modes Username, Username and Password and Access Token:

– List : A list of valid authorisations (usernameor username and password, depending on
the configuration of the login mode) can be defined as part of the study configuration.
The information can either be edited in the IRTlib Editor or imported from a CSV file.
Defined values can also be exported as a CSV file.

– Code for checking: A Blockly-function can be specified, which returns True if the trans-
ferred login data is valid (otherwise False).

• Group login: Depending on the Login mode, the user name or access token is used as the
person identifier. If the Group login option is activated, these transferred login data are
used for authentication to identify the test participant as a member of a group (i.e. only
test participantswhoknowtheuser namecan authenticate themselves as part of thegroup).
An additional random identifier is then generated within the group to distinguish different
people from a group.

• Login source: The IRTlib Software supports several possible options for how login creden-
tials can be provided.

16

– Platform: A login dialogue is displayedby the IRTlib Player (i.e. the platform). The head-
ing for entering the access data, the labelling of the input for user name and password,
the labelling of the Next button, a welcome text and an instruction text as well as an
error text for failed login attempts can be configured.

– Parameters: Valid logindata for test participants can alsobeprovided via the command
line (i.e. parameters when calling up the offline version of the IRTlib Player) or via URL
parameters (i.e. parameters when calling up the study via a link to an online version of
the IRTlib Player). In this case, no login dialogue or login item is displayed.

– Item: As an alternative to an IRTlib Player dialogue, a CBA ItemBuilder task can also
be configured, which serves as a login input mask. Within the item, a so-called Exter-
nalPageFrame is used to send a specific JavaScript command to the IRTlib-Player to
validate an input (an example can be found here).

The login item must be available as a CBA ItemBuilder project file for the
configured runtime environment (Runtime) and added to the study config-
uration. The integrated import dialogue can be used to add a login item to
the study configuration. More information on importing CBA ItemBuilder
projects can be found in the help for the Items section of a Survey part.

• Additional parameters: In addition to the authentication of test participants, the login in-
formation can also be stored in the IRTlib software as an additional parameter, which can
then be used in the flow control, for example.

– Parameters for file names: The RawDataPath (i.e. the relative path under which the
offline IRTlib player saves the results data) and the MonitoringFile (i.e. the name of
the file in which the offline IRTlib player writes information for study monitoring) can
be configured as part of the login data.

– Blockly variables: Additional parameters can also be stored as so-called preload vari-
ables with the login information.

Table 4.1: Summary of Options that can be Combined as Configuration of the Login

Login Mode
Storage for
Session Data Group Login Valid Values Login Source

Additional
Parameters

Random
indictor

yes no no none no

username yes yes list or code platform,
item +

parameter

values or
parameter

username
and password

yes yes list or code platform,
item +

parameters

values or
parameters

access token yes yes scheme or
code

platform,
item +

parameters

parameters

4.4 Display of assessment content

Studies can define how the CBA ItemBuilder content is to be displayed. The settings in the Display sec-
tion can relate to the scaling and alignment of the content as well as the behavior of the IRTlib Player
application.

17

https://kroehne.github.io/CBAItemBuilderBook/items/10_00/IRTLibLoginExample.zip

Detailed information on configuring the Display of a Study can be found here in the embedded help:

Embedded program help

4.4.1 Display Settings

Selected options are available for configuring the display, which relate to the presentation of the
assessment content and theuseofCBA ItemBuilder content, which is createdwith adefinedaspect
ratio (width and height).

4.4.1.1 Window Mode

In theWindowMode selection, it can be configured whether an additional window is displayed in
the IRTlib Player. The configuration is implemented differently depending on the environment:

• Window : In the configuration Window, a regular programm window is used in the offline
IRTlib Player, in the online IRTlib Player the assessment content is displayed in the normal
browser area, and the address bar and navigation buttons of the browser are visible in this
mode.

• Full screen: The offline IRTlib Player starts directly in full screenmode if this option is config-
ured. This is also associated with a Kiosk Mode, i.e. access to other programms and (acciden-
tal) termination of the programm is only possible via the Task Manager. If a test manager,
for example, is to be able to end the test, a Test Administrator Menu must be configured.

The online IRTlib Player can also display assessment content in full-screenmode if this
option is selected. If full screenmode is exited in thebrowser, the assessment content
is then hidden. As it is not possible to automatically switch to full-screen mode in a
browser, the target person first sees the following message from the platform:

18

By clicking on the button Activate Full Screen the full screen mode is started and the
assessment content is then displayedwithoutwindow frames and navigation areas of
the browser. For a short time, the browser then typically displays a message that full
screen mode can be cancelled again with Esc.

Note that this function is only available in browsers that support full screen mode
(especially on older mobile devices, full screen mode is not fully supported; see for
details e.g. on caniuse.com).

• Full Screen, if Supported : In this mode, the assessment in the online IRTlib Player is only dis-
played in full screen mode if the browser supports full screen mode. However, the content
of the computer-based assessment is displayed in windowed mode when a study is deliv-
ered online and a browser that does not support full-screen mode is used. For the IRlLib
Player offline, this configuration is identical to full screen.

• Debug: This mode allows access to the browser’s developer tools during test execution,
which are intended for debugging by software developers.

If the offline IRTlib Player is started with a study that has the Debug entry configured
as Fixed mode, the so-called developer tools (DevTools) can be called up via the right
mouse button during the task presentation.

19

https://caniuse.com/?search=fullscreen

4.4.2 Scaling and Alignment

Assessment content created with the CBA ItemBuilder is created for a specific size in pixels (width
timesheight). The content can thenbe scaled for display ondeviceswithdifferent screen sizes and
screen resolutions. In the CBA ItemBuilder, the option under Scaling Options is therefore available
in the Preview :

Analogue settings can be made in the IRTlib Editor.

• Scaling: Setting how content should be adjusted if the available space and size of the items
differ (Scaling Mode).

– None: The content is displayed without adaptation to the available window or screen
size (corresponds to None).

– Upscale: Content is enlarged so that the available space is utilised (corresponds to Up).
– Downscale: Content is scaled down so that it fits on the screen/in the window (corre-
sponds to Down).

– Window size: Contents are enlarged and reduced (corresponds to Both).

• Horizontal Alignment: The options centred / left / right are used to align item content
horizontally if the width of the window or screen is greater than the width of the content.

• Vertical Alignment: The options centred / top / bottom are used to align item content ver-
tically if the height of the window or screen is greater than the height of the content.

4.4.2.1 Further Settings

• Force suitable screen size: If Scale down or Window size is not selected for Scaling, this
option can be used to force that you can only start task editing if the available size of the
window or screen is larger than the required width/height of the items. Otherwise, the
following message is displayed:

20

Note: The display settings refer to all survey parts within a study. If several studies are configured
in an IRTlib player, the settings must match each other, i.e. it is not possible to administer a study
inwindow mode: window or inwindow mode: full screen at the same time with one instance of an
IRTlib player.
If changed settings are to be retained, the changes must be saved using the disc symbol. Other-
wise, the discard icon can be used:

4.5 Menu for test administrators

If the execution of assessments is accompanied by test administrators or interviewers, functions can be
defined password-protected for test administrators.

Warning

Even if you do not need the functionality of a test administrator menu to carry out your data
collection, you should still define a test administrator menu if you plan to collect data offline with
the IRTlib Player. This is the only way to ensure that you can exit the application without the Task
Manager (and without possible data loss) in the event of unforeseen events.

Detailed informationon the configurationof theTestManagermenu canbe foundhere in theembedded
help:

Embedded program help

4.5.1 Concept of a Test Administrator Menu (Menu for Test Administrators)

The Test AdministratorMenu is configured in two steps. Firstly, a key combinationmust be defined
withwhich the test administratormenu canbe requested. If this key combination is pressedduring
test taking, a window for entering the password appears. Test administrators enter the password
known (only) to them and thus gain access to selected functions. For this purpose, one or more
roles can be defined in the IRTlib Editor in a second step.

4.5.1.1 Access For Test Administrators

Firstly, a key combination must be defined.

• Key: The configuration of the key combination for the test managermenu first requires the
definition of a key. To define a key, click in the field and press the key that is to be used for
the test manager menu.

• Modifiers (Alt, Ctrl and Shift): For a key, you can also specifywhether one ormoremodifiers
must be pressed to open the test conductor menu.

Example:

21

• The following configuration defines the key combination Ctrl + Shift+ X:

The defined key combination only opens the option to enter a password for test administrators
during test processing in the IRTlib Player. To use the function, a password is required, which is
defined together with a role in the second step.

4.5.1.2 Roles

After calling up the defined key combination, the prompt to enter a password is displayed during
test processing:

Which functions are actually accessible is controlled by which password is entered. Only if a valid
password is known, functions of the test line can be called.
Example:

• In the following configuration, test administrators can use this password to jump to the next
task (Next) or end the application (End session):

To define a role, first click on the + symbol at the bottom right. The name of a role
and a password can then be defined:

22

The nameof the role is for documentation purposes only. The assignment of a unique
password and the selection of one or more of the following functions are decisive for
the functionality:

• Task back: Enables navigation to the previous task.

• Task forward: Enables navigation to the next task.

• Cancel Item List: Allows you to cancel the processing of the current item list. This option
is particularly useful if the Routing option is activated in a Survey section and the definition
of CBA ItemBuilder tasks is implemented using item lists.

• Cancel Survey Part: Enables the cancellation of the current survey part.

• Cancel session: Enables the current session to be ended.

• Volume control: Enables the volume to be changed.

The audio file that is played to control the audio output after the volume has been changed can
be inserted in the Audio for sound test section and stored in the study configuration.
If changed settings are to be retained, the changes must be saved using the disc symbol. Other-
wise, the discard icon can be used:

4.6 Completion of surveys

For the integration of assessments into external processes, it is possible to configure how to proceed
after processing the assessment content in a session, i.e. what will happen at the end of the session.

Embedded program help

4.6.1 Session and End of Session

A Session refers to the execution of a survey with one person at a specific time. The content dis-
played in a session corresponds to a configured Study as it can be created in the IRTlib Editor. After
all parts of the survey defined in a Study have been carried out, the End of Session is reached.

23

4.6.1.1 Configuration of the Session End

What happens after a Session End, i.e. how the IRTlib Player behaves at the end of a session, can
be defined with the following options:

• Start new Session: A new session is started. This behaviour is not useful if the login data is
transferred (either as Startup parameter or as URL parameter).

• Display End Text: If this option is selected, the platform displays the configured text. The
text can be configured as aMessage on End Page.

• Display End Item: Analogue to a Login Item, a CBA ItemBuilder item can also be defined to
be displayed at the end of a session.

The End-Item can finally trigger the termination of the offline IRTlib Player. An exam-
ple of an End Item with the necessary JavaScript call can be found here.

• Redirect to Exit URL (Redirect to Exit-Url): For online deliveries with the IRTlib Player it is
possible to redirect to a URL. The Redirect URL can then be configured.

4.6.1.2 Further Options

Session ID can be Reused: If this option is activated, multiple data captures can be administered
with one session ID.
If changed settings are to be retained, the changes must be saved using the disc symbol. Other-
wise, the discard icon can be used:

24

https://kroehne.github.io/CBAItemBuilderBook/items/9_09/IRTLibEndItemExample.zip

5 Vorbereitung: Erhebungsteile / Preparation:
Study Parts

Assessments that are administered with the IRTlib software consist of so-called survey parts.After con-
figuring a study, at least one survey part must be created.

5.1 Survey part administration

After creating a study, the next step in preparing a test evaluation is to add a new survey part in the
Survey parts view:

https://youtu.be/YFgu8uz8nkc

The created survey parts appear as cards in the Survey parts view. If studies consist of several survey
parts, the order of the survey parts can be adjusted in the Survey parts / Overview view for linear pro-
cesses. If survey parts are to be controlled depending on variables (e.g. passed preload variables or other
blockly variables), routing between survey parts can be configured as an alternative.

Detailed instructions for creating survey parts can be found here in the embedded help:

Embedded program help

5.1.1 Create Survey Part

The IRTLib Editor is used to create configurations for Studies, which can then be used in an IRTLib
Player to carry out computer-based assessments. Studies consist of one or more Survey Parts.

5.1.1.1 How does it work?

Once a Study has been created, a Survey Part can now be added via the plus icon at the bottom
right:

Then enter a Name and optionally a Description in the Create new Survey Part dialogue.
Make sure that only letters (upper and lower case), numbers and a _ are allowed for the name.
Then click on Save.

25

https://youtu.be/YFgu8uz8nkc

If required, you can also assign an image to a survey part using the following icon. This image is
used in the IRTLib Editor for this Survey Part :

5.1.1.2 Edit Survey Part

Created survey parts are displayed as tiles in the survey part overview:

• To continue with the configuration of a survey part, click on the small edit icon:

• Delete survey section: You can also use the recycle bin icon to delete survey parts. The
deletion of survey parts cannot be undone:

5.1.1.3 Sort survey parts

If the option Enable Routing for Survey Parts is not selected in the Info view (section Overview)
in the configuration of a Study, then Survey Parts are administered in the order in which they are
displayed in the survey part administration.

• Move Survey Parts: To change the order of Survey Parts using drag-and-drop, the Change
Order mode must first be activated using the following toggle icon:

26

The tiles can then be put in the desired order. The Change Order mode is ended when
the disc icon is clicked or the changes are discarded:

The order of study parts can be changed in the study parts view:

https://youtu.be/Ag0IcETZTdM

Before adding or selecting CBA ItemBuilder projects, as described in the section Assessment contents
(items), selected items can be configured in the Info view.

A detailed description can be found here in the embedded help:

Embedded program help

5.1.2 Basic Configuration for Survey Parts

5.1.2.1 Name and Description

• Designation: The internal name of the survey part, which is displayed in the IRTlib Editor
for editing and defining the process. Designations must not contain any special characters,
spaces or umlauts and must not begin with a number.

• Description:Optional, additional description of a survey part.

5.1.2.2 Routing Within Survey Parts

• Enable Routing: The configured assessment contents in the Items section can be adminis-
tered as a linear sequence, i.e. in the configured order.If a different sequence is to be used,
the Enable Routing option can be selected here. The sequence can then be specified as a
visual program in the Routing section.

5.1.2.3 Further Settings

• Use snapshot: So that CBA ItemBuilder tasks can be visited multiple times, their content is
saved in so-called snapshots when the item is exited. Snapshots can also be used to display
the contents of a CBA ItemBuilder task again at a later time. This option should only be
deactivated if there is an important reason and the consequences (i.e. the unsaved snapshot
data) have been carefully considered.

Adding and managing CBA ItemBuilder projects within the IRTlib Editor is done in the Items section.

Note on time limit

For the administration of time-limited survey parts, a time limit can be defined under processing-
time. If the option Limit processing time is activated, one or more tasks can be defined, which are
displayed in the event of a timeout. In addition, content can be defined in the pre-item(s) and
post-item(s) section, which is administered before or after the time-limited part.

5.2 Insert assessment content (items)

The contents that are to be used in a survey section of type CBA ItemBuilder are transferred to the con-
figuration via the IRTlib Editor, i.e. the configuration created with the IRTlib Editor also contains the CBA

27

https://youtu.be/Ag0IcETZTdM

ItemBuilder Project Files. The Items view is available for adding or updating CBA ItemBuilder projects.

A detailed description can be found here in the embedded help:

Embedded program help

5.2.1 Configure items

5.2.1.1 Basic functions

Importing CBA ItemBuilder project files: The IRTlib Editor maintains a list of known items to
which CBA ItemBuilder project files that are not yet known can be added. To add a project file,
first open the List of known items with the + symbol and then select the Import button.

Update already imported CBA ItemBuilder project files: If a CBA ItemBuilder project file is al-
ready included in the List of Known Items, the project files can be updated. They are then not
added to the List of known items, but the existing CBA ItemBuilder project file is stored in a newer
version. To update an item, it must first be selected in the list of items in a survey section. This
activates the update symbol. In the Update item dialogue that then opens, an updated version of
a CBA ItemBuilder project file can be added using the Import button.

• Preview of CBA ItemBuilder project files: Items added in a Survey Part section can be
viewed directly in the IRTlib Editor in a built-in preview function. To view an item, it must
first be selected in the list of items in a survey section. The Preview can then be called up
using the eye symbol:

• Exporting CBA ItemBuilder project files: CBA ItemBuilder project files that have been im-
ported into the IRTlib Editor can be exported for further editing with the CBA ItemBuilder.
To export a selected item from the list of items in a Survey Part, the download icon can be
called up:

• Deletion of CBA ItemBuilder project files: The items inserted in Survey Parts can be
deleted from a Survey Part. The delete symbol removes the item from a Survey Part, but
it remains in the list of known items:

Note: It is not yet possible to delete CBA ItemBuilder project files from the List of
known items. This functionality is not necessary because CBA ItemBuilder project files
areonly transferred from the IRTlib Editor to the configurationof a Study ifTasks from
a CBA ItemBuilder project file are used in a Survey Part.

28

5.2.1.2 Sorting items (linear process)

• Sorting CBA ItemBuilder project files: If the Enable Routing option is not selected for a
Survey Part, then the order can be adjusted in the list of items using the following button:

The items are then administered exactly as they appear for a Survey Part in this list.

Note: Changes to the Items viewmust be saved using the disc symbol or discarded using the undo
symbol:

5.3 Processing time

If the administration of a linear sequence of CBA ItemBuilder tasks is to be administered with a limited
processing time, this can be implemented by defining a maximum processing time (in seconds). If, for
example, a test content is to be administered for a maximum of 28 minutes, a time of 1680 seconds is
defined as the processing time. The message that is to be displayed when the processing time expires
can be defined as one (or more) CBA ItemBuilder tasks.

A detailed description can be found here in the embedded help:

Embedded program help

5.3.1 Define Time Limit

Survey Parts without Routing can easily contain a time-limited section. To do this, the option Re-
strict Item Time is activated in the Time Limit view and a time limit in seconds (>0) is entered.
Four groups of CBA ItemBuilder Tasks are distinguished for a time limit, which are defined in dif-
ferent places in the IRTlib Editor. The items for which the time limit is to apply are defined in the
Items view (analogue to non-time-limited Survey Parts):

• Items: Items that are displayed until the time limit has been reached.

In the Time Limit view, the following can also be defined:

• Timeout Items: Items that are only displayed if the time-limited items have not been com-
pleted within the limited processing time.

Finally, the following tasks can be defined as individual views of the configuration of survey items:

• Prologue Items: Items that are displayed before the time-limited section.
• Epilog items: Items that are displayed after the time-limited section.

The icons for the following operations are available in all the above dialogues:

• Add:

• Refresh:

29

• Preview:

• Download/Export:

• Delete:

• Sort:

Note: More complex designs with several timers can be implemented with the IRTlib Editor if the
option Enable Routing is activated in the overview view for a Survey Part.
Note: Changes to the Time Limit view must be saved using the disc symbol or discarded using the
undo symbol:

Opening/closing credits items

A central concept for the implementation of time limits in the IRTlib software is the separation
of time-limited items and additional assessment content that is administered before or after the
time-limited part.

• Items administered after a potentially time-limited section of an assessment are referred to as
post-items.

Embedded program help

5.3.2 Items After a Time Limit

SurveyParts allowthedefinitionof items indifferent sections. Items in this sectionEpilogue Item(s)
are displayed after the items defined in the Items section of a Survey Part. The separation into
Epilogue Item(s) and Items is particularly useful if a time limit is activated under Time Restriction.
The following options are available for configuring items in the Epilogue Item(s) section:

• Add:

• Refresh:

• Preview:

• Download/Export:

• Delete:

• Sort:

Note: Changes to the Epilogue Item(s) viewmust be saved using the disc symbol or discarded using

30

the undo symbol:

• Items that are administered before a potentially time-limited section of a survey part are called
prefix items.

Embedded program help

5.3.3 Items Before a Time Limit

The Survey Parts allow the definition of items in different sections. Items in this section Prologue
Item(s) are displayed before the items defined in the Items section of a Survey Part. The separa-
tion into Prologue Item(s) and Items is particularly useful if a time limit is activated under Time
Restriction.
The following options are available for configuring items in the Prologue Item(s) section:

• Add:

• Refresh:

• Preview:

• Download/Export:

• Delete:

• Sort:

Note: Changes to thePrologue Item(s) viewmust be saved using the disc symbol or discarded using
the undo symbol:

5.4 Variables

Under Development

This function is currently under development.

Embedded Program Help

(This functionality is still under development).

31

5.5 Codebook

Under Development

This function is currently under development.

Embedded Program Help

(This functionality is still under development).

5.6 ItemPool

Under Development

This function is currently under development.

Embedded Program Help

(This functionality is still under development).

5.7 Routing within survey parts

If CBA ItemBuilder tasks are not to be administered in a linear sequence that is fixed in advance and
identical for all test subjects, then the Routing function of the IRTlib software can be used.

A detailed description of Routing within survey parts can be found here in the embedded help:

Embedded program help

5.7.1 Summary of Routing within Survey Parts

The sequence of CBA ItemBuilder tasks can be defined here using Blockly (i.e. a form of visual
programming). Blockly-based sequencing is available if the option Enable Routing is selected for
a Survey Part. The option can be found in the Info section of a Survey Part. If it is activated, the
Survey Part contains the entry Routing.

5.7.1.1 Examples

The basic idea of using Blockly for the definition of processes in computer-based assessments will
first be illustrated with a few examples.

• Example for linear sequence

Based on the CBA ItemBuilder Tasks added to a survey part in the Items view, a linear
sequence of Tasks corresponds to the following Blockly definition:

32

A list of CBA ItemBuilder Tasks is passed to the Blockly element Show Items, which is
created with the operator create list with. The list is processed in the order shown,
whereby each CBA ItemBuilder Tasks is displayed until the NEXT_TASK- Command is
executed.

An equivalent formulation of a linear sequence can also be made with several Show
Items blocks if no back navigation is necessary:

• Example for simple test booklets

With the help of an variable (here: booklet) and a simple if/make-condition, it is now
possible to define a sequence that administers different items depending on the
value of the variable:

The items for start and end are always administered, tasks 1-3 only if the variable
Booklet has the value 0, tasks 4 and 5 if the variable Booklet has a value other than 0.

Alternatively, the identical sequence can also be created using the Blockly operator
for displaying item lists:

33

Both variants are completely equivalent in terms of functionality, but the second
approach with lists allows the use of the back navigation option within the booklet-
specific tasks.

Example for process with time limit

To implement time-limited sections within a survey section using the Blockly configu-
ration, the following Blockly component can be used:

Each sequence begins with a start task that is not time-limited and ends with an end
task that is also not time-limited. In between, there is a time limit for a section called
MyFirstTimer, which has a time limit of 60 seconds.

Tasks 1, 2 and3 aredisplayed in theRuntime code sectionwith a time limit. If a timeout
occurs, i.e. the three tasks are not processedwithin the 60 seconds, task 4 is displayed
(also without a time limit).

Example of simple booklet design with time limit

For many items, the definition of booklet designs, i.e. task sequences with balanced
positions, can be simplified using functions or lists.

If no back navigation is necessary, functions can be used for the definition of clusters:

34

With back navigation, the functions can return lists of tasks:

35

For more information see here.

5.7.1.2 Notes on using the Blockly editor

Processes are defined in the visual Blockly editor. Execution begins with the element that is
aligned furthest up. If necessary, the workspace can be automatically aligned using the tidy-up
function. To add Blockly operators, they can be dragged and dropped from the palette.

• Delete: Operators can be dragged to the recycle bin to delete them. Selected Blockly ele-
ments can also be deleted using the Delete(delete) button. Alternatively, selected Blockly
elements can also be deleted via the context menu.

• Redo/Undo: Individual actions can be undone within the Blockly editor. The key combina-
tion ‘Ctrl + Z’ can be used for this. Pressing ‘Ctrl + Y’ repeats an action. By clicking in an
empty section of the Blockly editor, you can access a context menu, which also contains the
options for Undo and Redo:

• Save: Customisations in theBlockly editormust be saved. Thefloppydisc symbol is available
for this purpose at the bottom right:

36

https://cba.itembuilder.de/chapter-cba-principles.html#introduction-to-rotations

If you want to discard the change (as a whole), you can use the discard icon at the
bottom right.

• Zoom: The view in the workspace can be enlarged with the icons + and reduced with -.

• Context menu: Further options are available via the right mouse button (context menu) in
the Blocky editor. To call up these functions, a secondary click (right mouse button) must
be performed on a Blockly element:

– Copy duplicates the selected Blockly element, including all connected elements.
– Commenting on blocks is possible.
– Blocks can be deactivated/activated.
– Some block types allow you to change the display form external/internal.
– Blocks that contain further blocks can be folded/unfolded.
– Blocks can also be deleted via the context menu.

Some Blockly elements also provide aHelp entry in the context menu, which refers to
generally accessible Blockly documents (https://github.com/google/blockly/wiki/).

5.7.2 Use of Blockly for flow control

The basic functions for using the Blockly environment to control assessments can be found in the
Session section.

5.7.2.1 Show individual items

CBA ItemBuilder tasks that have been imported in the Items view for a survey section can be ac-
cessed in the flow control, as shown in the examples above, using the following Blockly element
for Tasks:

37

The element, which can be found in the Session section of the Blockly editor palette, can be config-
ured using the selection list. Each Blockly element for tasks can refer to exactly one specific task,
i.e. a flow definition usually consists of several such elements.
Blockly elements for tasks cannot be inserted directly into the flow, but are used together with a
Show Item element:

The example for simple test booklets illustrates that sequences in the blockly definition are often
defined by a sequence of several show item operators. Show Item operators can be inserted into
conditions and loops, both within the main flow and within functions.

5.7.2.2 Use of scopes (scopes)

With the help of Blocky-based flow control, it is also possible to administer CBA ItemBuilder tasks
multiple times within a flow:

When an item is called up again, the status from the last visit is restored, i.e. processing is contin-
ued. If items are to be resubmitted several times, i.e. unedited, automatic restoration may not be
desired. The checkbox for specifying a scope (scope) can be optionally activated for this purpose:

If nothing else is specified, the item is administered in the “default” scope. Alternatively, a text
can be defined, as shown in the following example:

On the first visit, the task is displayed in the Scope “Visit1”. This is followed by a new, independent
display of the task in a different scope (“Visit2”). In the third call, the task is displayed again with
the data that was already collected during the first visit (i.e. the Scope “Visit1” is used again).

5.7.2.3 Display multiple items (item lists)

As shown in the example for linear sequence, linear tests can also be displayed using lists of tasks.
Lists can be used with the Blockly operator Show Items:

38

• Back navigation: The Show Items element for lists can be configured via the Can navigate
back property. If this property is selected, CBA ItemBuilder -Tasks can use the Command
BACK_TASK to request navigation to the previous CBA ItemBuilder Tasks.

• Cancelling lists: The use of lists also allows lists to be cancelled. Lists can be cancelled in
two ways:

– The Command CANCEL_TASK, which can be used within CBA ItemBuilder Tasks, is
called.

– In the test administrator menu, which has been configured for the study and, if neces-
sary, customised using theBlockly operator Edit test administratormenu, the function
Cancel item list is called.

This cancels the administration of an item list and the Blockly process is continued
after the Show Items block.

5.7.2.4 Display of items with storage of the results

The operators Show Item (for individual items) and Show Items (for item lists) are also available as
operators for value assignments:

These can be used to assign itemprocessing results to variables (string or array) and then evaluate
them for process control.

• Single task:

• List of tasks:

5.7.2.5 Definition of time limits

As already illustrated in the example process with time restriction, the Blockly block Start time
with name can be used to implement the time-restricted administration of items.

39

The Blockly element Start timer with name allows the definition of time limits. Each time limit can
have its own name. The time must also be specified in seconds. This can be used to define the
type of time to be used:

• Realtime: The timer runs in real time. It is not affected by server downtimes or a session
restart.

• Servertime: The timer runs in server time. Is not affected by a session restart, but does not
take server downtime into account.

• Sessiontime: The timer runs within a session. Is interrupted in the event of an interruption
due to server downtime or a session restart.

• Clienttime: The timer only runs in client time and is also interrupted when the session is
paused.

Finally, two positions can be filled with further blockly operators (such as one or more Show Item
blocks for displaying individual items or one or more Show Items blocks for displaying lists):

• Runtime code: These blocks are filled until the defined time has elapsed.
• Elapsed code: These blocks are only filled in if the Runtime code was not completed within
the time.

5.7.2.6 Blockly operators for the test administrator menu

In the study definition, test administrator menu functions can be created for one or more roles.
Roles combine different functions that can be differentiated using the password to be entered by
the test administrator.
Customise standard functions: The following standard functions can be defined for a study in
the Info / Test leader menu section:

• Navigation: Task forward / Task back
• Lists*: Cancel item list
• Exit*: End survey part and end session
• Volume control*: Adjust the audio volume during the assessment

During the processing of a survey section, the following blockly operator can be used
to customise the test administrator menu in the flow control for specific contexts:

40

The test administrator menu can be changed for each of the standard functions (in
the Function section) for a role (in the Group section) as well as the button label (in
the Label section):

• Add : Function is added to the test leader menu
• Remove: Function is removed from the test conductor menu
• Deactivate*: Function is deactivated in the test conductor menu
• Activate*: Function is activated in the test conductor menu

Calling this Blockly operator in the test sequence defines the behaviour of the test ad-
ministrator menu in the rest of the test sequence. In contrast to Remove, deactivated
functions remain visible in the TestManagermenu, but cannot be executed (until they
are activated again).

Using Blockly functions in the Test Manager menu: The Blockly operator for editing the test
leader menu also contains the option to execute Blockly code (ExecuteBockly) in the Function sec-
tion:

If ExecuteBlockly is selected, a function defined within the Blockly editor can be se-
lected in the Blockly element Edit test administrator menu. The Blockly operators de-
fined in this function are then executed when a test leader selects the corresponding
button in the test leader menu at runtime.

5.7.3 Advanced Blockly usage

5.7.3.1 Flow control with conditions

The Logic section contains the Blockly operator if/make, which can be used to implement condi-
tions in the flow. Conditions are logical expressions, e.g. checking whether a preload variable has
a certain value:

41

The blocky operators defined within the condition block (i.e. next to make) are only executed if
the condition (if) is fulfilled. The example checks whether a Boolean variable has the value true.
The condition is definedas a separateblock that is connected to theblockly operator if/make. Here
are the two components separately:

• Condition:

• Logical expression:

5.7.3.2 Use of logical expressions

Logical expressions in conditions are based either on value comparisons or returns from functions.
Value comparisons can be realised with the following blockly element:

The two slots can be filled with values. A corresponding Blockly element is provided in the Logic
section for Boolean values (true/false):

Conditions are also possible with variables of a different data type:

For numerical values, there is a correspondingBlockly element in theMath section, which contains
operators for numbers and simple mathematical operations:

With its help and a numeric variable, the following condition can be formulated:
For technical reasons, it may also be necessary to check whether a variable has no value at all. This
can be implemented by using the blockly component null:

Combinationof logical expressions: Individual conditionsor logical expressions canbe combined
with the following Blockly element from the Logic section:

42

An and and an or linking of the statements is available for selection. The and link is
true if both expressions are true, the or link is true if at least one of the two expres-
sions (or both expressions) is true.

Several logical expressions can be nested inside each other:

Note: For a clearer display, the external display is selected for the external and link.

Multiple conditions (if / else): By clicking on the small cogwheel symbol of a condition block
(if/make), it can be configured:

By adding an unless section, a further condition can be added. The condition defined
in an if section is checked if the previous conditions (if) are not fulfilled. If a condition
is fulfilled, the defined blockly operators are executed.

By adding an if section, blocks can be added that are executed if none of the condi-
tions are met.

Check operator: For value assignments depending on a condition, the blockly editor provides a
special operator check-if-true-if-false:

The operator combines a value assignment with a logical expression:

43

In this example, the string variable MyStringVariable is assigned the value
Yes if the boolean variable MyBooleanVariable has the value true. If
MyBooleanVariablehas the valuefalse, MyStringVariable is assigned the value
No.

Negation: The following Blockly operator is available to reverse a logical expression (negation):

5.7.3.3 Sequence control with loops

The multiple execution of blockly operators (and the actions that can be displayed with them) is
possible with loops. The Loops section of the Palette contains the Blockly elements required for
this.
Repeat n times: The following Blockly operator can be used to repeat the execution of blocks n
times:

Repeat as long as: Loops can also be repeated until a condition is true (or as long as a condition
is true):

Example:

Count from/to: Loop with auxiliary variables:

For each value from list: Loop over all values in a list:

44

Cancel loops prematurely: The following blockly element can be used to cancel a loop (prema-
turely) or to start the next loop pass prematurely:

5.7.3.4 Operators for numbers and simple mathematical functions

The Math section of the Palette contains Blockly elements for using numbers and simple mathe-
matical functions.
Expressions

• Numbers: Integers / decimal numbers

• Symbols: Special symbols or constants:

Basic functions

• Addition, subtraction, multiplication, division and power function of two arguments:

Nesting is possible, e.g:

45

• Division with remainder:

• Whether a number is even can be checked with this blockly element:

• With the following blockly element, a number can be limited to a section:

Built-in functions

• Trigonometric functions:

• Rounding of values:

• Further functions:

46

Note: - allows the negation of numerical values, as can be seen in the following ex-
ample:

The example shows the tooltip for the help available in Blockly and an example where
the number 5 is converted into the number -5 using the - operator. The outer condi-
tion (negating 5 results in -5) is therefore true.

Generation of random numbers: Two blocky elements are available for generating random num-
bers:

• Integers (in value range):

• Random number between 0 and 1:

Numeric functions for lists: Predefined functions for lists include:

Notes:

• If required, further functions can be implemented with loops for lists.

• When using the functions, please note that the list function can only be used for lists with
numerical data types!

5.7.3.5 Operators for text and simple string operations

The Text section of the Palette contains Blockly elements for using strings.
Expressions: The following operator is available for creating text:

Chains: Various operators can be used to join text and assign it to variables:

• Append a text to a variable:

47

• Concatenate texts (and variable values) and pass them on to other blockly operators:

• Assign a variable to merged texts:

Text length: The length of a character string can be determined with the following blockly oper-
ator:

Check for empty string: Empty string variables can be recognised by the fact that the number of
characters is 0.

Alternatively, the following blockly operator can be used:

Find position in string: An operator that searches in text (passed by variable or as an expression)
for the first or last occurrence of a term can be used as follows:

The position of the term within the character string (i.e. in the text) is returned.
Form sub-strings: The following operator takes thefirst letters from the transferred string in text.
The number of letters is also passed.

• Example (here, if the option take first is selected, the variable MyStringVariable is as-
signed the text ABC, i.e. the first three letters of the character string ABCDEFG):

letter function parameter N meaning

take Yes The first N letters are returned
take from last Yes The last N letters are returned
take first No The first letter is returned (corresponds to take with N=1)
take last No The last letter is returned (corresponds to take from behind

with N=1)
Take random No A random letter is returned

48

Letters from a character string can also be extracted using the following operator and assigned
to a variable, for example:

• Example (here, for example, characters 3 to 5 can be taken from a character string):

Change texts: Existing texts (either as expressions or from variables of datatype string) can be
modified by applying operators.

• The following operator can be used to convert text to uppercase or lowercase:

The nouns option converts the passed string into a sequence of words with a capital
initial letter (except for strings that are written entirely in capital letters).

• Leading, trailing or leading and trailing spaces can be removed using the following operator:

5.7.3.6 Operators for times and simple time operations

The Date & Time section of the Palette contains Blockly elements for using times within flow defi-
nitions.
Fixing points in time: Variables of the datatype DateTime can be assigned timestamps.
Determine time differences: Complete example: The following Blockly code measures the time
for processing tasks 1 to 4. To do this, the start time is first recorded, and after the tasks have
been processed, the time difference is determined and converted into seconds:

49

Conversion of time measures

5.7.3.7 Operators for lists

The Lists section of the Palette contains Blockly elements for creating and using lists.
Create list: Various options are available for creating lists.

• Lists can be created from existing elements:

The number of elements of the create list with operator can be configured using drag-
and-drop after clicking on the cogwheel symbol:

When creating lists, please note that the Blockly editor does not check the data type.
Lists with values of different data types can be created (incorrectly), but do not lead
to a functioning test sequence.

• Lists can be created by repeating an element:

Combining lists: Existing lists can be merged with the following operator:

Sublists: A sublist can be selected from lists using the following operator:

50

Further operator options for to: to from last and to last.

List properties: The following operators are available to query properties of a list:

• The following operator returns true if the linked list is empty:

• The following operator returns the length of the list:

• The following operator returns the distinct elements of a list

Search and replace: The following operators are available for searching and replacing elements
in lists:

• The following operator finds elements in lists:

• The following operator returns / removes or replaces in a list and returns the element:

Further options of the operator for that : from behind that / first / last and random.

• The following operator replaces and inserts in a list:

Further options of the operator for that : from behind that / first / last and random.

51

Conversion of lists and text: List and text can be converted using separators.

• The following operator creates a text from a list or a list from a text:

Sort lists: Elements in lists can also be sorted.

• The following operator returns the distinct elements of a list:

5.7.3.8 Blockly variables

The Variables section of the Palette contains Blockly elements for creating and using variables.
Create variable: To create a Blockly variable, the Palette contains the Create typed variable:

• Blockly variables always have a variable name and data type:

Simple data types and value assignments: The following basal data types are supported:

52

• Boolean: Logical truth values and logical expressions (true or false)

• Number : Data type for numerical values (with and without decimal place)

• String: Text values or character strings

The following data types are provided for times:

• DateTime: Date and time

• TimeSpan: Time span

Data types formultiple values: In addition to the basal data types, data types formultiple values
are also supported:

• Array : Data type for lists

• Dictionary : (documentation missing)

• KeyTypedValuePairs: (documentation missing)

Use variable values: To use variable values, blockly elements with inputs can hold the following
components:

53

• Thevariable tobeused canbe selected. Fordefinedvariables, there is also aBlockly element
in the Variables section of the Palette:

• The palette also contains a blockly element of the type set … on. This can also be used to
select which value of the variable it sets:

54

5.7.3.9 Blockly functions

The Functions section of the Palette contains Blockly elements for using functions within flow
definitions. Functions combine blocky code so that it can only be defined once but used multiple
times.
Defining functions: Two different forms of functions can be defined.

• Functions without a return value:

To be called, functions without a return value can simply be connected to previous
and subsequent blockly elements in the sequence (i.e. they have an up and down con-
nection):

• Functions with return value:

Functions with a return value can be called in an assignment block (i.e. they have a
connection to the left):

The type to which an assignment makes sense depends on the type of the return value.

55

Defining return values of functions: Functions are defined by special blockly elements that can
be inserted anywhere in the code editor.
Return values can be defined for functions with a return value. The return value can be added
directly to the function definition next to gib zurück :

In addition, the following two blockly elements are available, which can only be usedwithin a func-
tion definition (with return value):

• The operator return allows a value to be returned. After this, no further blockly elements
can be placed in the flow within the function (i.e. the return operator has no downward
connection):

• The if returnoperatoronly returns a value if a condition is fulfilled. If the condition is fulfilled,
the processing of the sequence in the function ends; if the condition is not fulfilled, the
processing is continued (i.e. the if return operator has a downward connection):

• The if-return operator is therefore identical to the following combination of operators:

• Both operators (if return and return) cannot be used outside of functions:

• The two operators (if return and return) can be used within functions without a return value
to terminate the execution of functions (but not to return values):

Example:

56

• The following function returns the value of the variable MyStringVariable (Any value 1)
in 50% of the cases (i.e. if a first drawn random variable is greater than 0.5). In the other
50%of cases, another random variable is drawn, and if this is greater than 0.5, then the text
Any value 2 is returned. If this is not the case either, the text Default is returned:

Return values are typed. The flow control also supports functions that …

• … return individual tasks:

• … Return lists of tasks:

Defining call parameters of functions: Functions can also use parameters that are to be passed
when the function is called (call parameters). Call parameters can be defined by clicking on the
small cogwheel symbol of a function block:

57

The function is then called by passing it in accordance with the parameter definition:

• Definition of a parameter:

• Call the function with value:

Example:

• The following example shows a function with two parameters, their use within the function
using the example of conditions and the call of the function with fixed values:

• Alternatively, the function can of course also be called with variables:

58

5.7.3.10 Use of item results in the flow control

(documentation follows)

5.7.3.11 Blockly operators to encode missing values

(documentation follows)

5.7.3.12 Blockly operators for writing data

(documentation follows)
Log data: The following operator can be used to store information directly in the log data:

Result data: (documentation follows)
Monitoring data: (documentation follows)

5.7.4 Commenting on Blockly code

The IRTLib Editor supports two different options for commenting blockly code.

5.7.4.1 Comments as Blockly elements

Comments that are to be permanently visible in the process can be added via the plaette in the
Development section:

These comments can be moved like blocky operators and show one-line comment text.

59

5.7.4.2 Detailed comments on Blockly elements

For more detailed comments, each block can be added with a comment (and deleted if available)
via the context menu:

These comments can comprise several lines and are displayed when the small ?-icon of a block is
clicked.

5.7.5 Presentation of Blockly code

5.7.5.1 Unfolding / folding

Large and complex processes can sometimes become confusing in the Blockly editor. In order to
hide blockly elements that are not required for viewing without changing the function of the flow
definition, blocks can be folded together:
This is illustrated in the following example:

• Unfolded (i.e. complete) representation of the selected block:

• Option to fold the block in the context menu:

60

• Collapsed representation of the block within the flow definition:

• Option to unfold the block in the context menu:

The folding / unfolding of blockly elements does not change the function of a flow definition and
is only used for a clearer arrangement of complex flow definitions.

5.7.5.2 Deactivate / activate

Note: This function is still under development.
The Blockly editor offers the option to only deactivate Blockly elements instead of deleting them.
Deactivated Blockly elements remain in the flow definition but are not executed.
In the following example, the block for displaying task 3 is deactivated, i.e. only task 1, 2 and 4 are
displayed:

Activating or deactivating Blockly elements is done via the context menu:

61

Internal / External: Some blockly elements with inputs (i.e. places where you can connect further
blocks) allow you to switch between two display forms.

• Internal: The inputs are arranged within the blocks.

• Externally: The inputs are arranged on the side of the blocks.

Both display formats are equivalent in terms of functionality.

Clean up: The context menu of the Blockly editor, which can be opened by clicking in an empty
section, contains the Clean up blocks function:

By callingClean up blocks, allBlockly elements in theBlockly editor are aligned vertically onebelow
the other.

5.8 Routing between survey parts

If several survey parts are defined for a study, the sequence of survey parts can be defined in which
respondents or test persons are presented with the contents of the survey parts.

In addition to simple linear sequences, sequences of several survey parts can also be configured with
blockly-based routing.

A detailed description of routing between survey parts can be found here in the embedded help:

62

Embedded program help

5.8.1 Summary of Routing between Survey Parts

The order of Survey Parts can be defined using Blockly (analogue to the definition of the order of
Items within Survey Parts). This option is available if the option Enable Routing for Survey Parts is
selected in the basic configuration for a study (in the Overview view).
For the general principles of usingBlockly in the IRTlib Editor, see the help onRoutingwithin Survey
Parts.
Functions that are only available in Routing between Survey Parts are:

• Display survey part

This Blockly-operator replaces Show Item within Survey Parts.

• Successful login

ThisBlockly-operator has the value true if valid login informationwas specifiedbefore
the maximum number of attempts (here: infinite, i.e. an unlimited number of times).

Note: Changes to the Routing view between Survey Parts must be saved using the disc symbol or
discarded using the undo symbol:

63

Part II

Datenerhebung / Data Collection

64

6 Datenerhebung: Übersicht / Data Collection:
Overview

6.1 Overview: Steps for using an IRTlib Player for Data Collections

Once a Study has been created and configured using the IRTlib Editor, a finalised Version of this configu-
ration must be created. Versions seal and finalise all configurations and have a unique version number
(referred to as a Revision). The use of Revisions makes the administration of data collections with the
IRTlib Editor and IRTlib Player reproducible, as the revision number of a configuration is also saved in
the data sets.

• Check Configurations:Before finalising and sealing a version, it is suggested to check all settings
again. The IRTlib Editor provides an additional Validation feature for this purpose.

• Create Sealed Version: If no further changes are required, the version can be sealed. This is done
by selecting the changes that have not yet been saved and clicking on the lock symbol in the IRTlib
Editor in the Publish view, in which the Study revisions are displayed.

• Export version: Versions of studies that are available in the IRTlib Editor can be exported. It is nec-
essary to export the configuration before it can be used with the IRTlib Player. When exporting,
the complete study configuration including the imported CBA ItemBuilder content is downloaded
as a ZIP archive.

• Import Study into IRTlib Player: Exported versions of studies from the IRTlib Editor can be im-
ported into an IRTlib Player for use. There is an automatic mode for individual Studies. If several
Studies are to be used simultaneously in one IRTlib Player, this can be configured manually.

• Testing the Study: Before the actual data collection can begin, each configuration should first
be tested with synthetic test cases (i.e. systematically).

If problems are still detected in an exported study, it is possible to return to the preparation (see Prepa-
ration of studies and Preparation of survey parts), modify the study definition and the configuration of
the test parts, create another sealed version and continue with the modified configuration.

65

preparation-studies.qmd
preparation-studies.qmd
preparation-parts.qmd

7 Datenerhebung: Veröffentlichen & Exportieren /
Data Collection: Publish & Export

The configuration of Studies and the Survey Part(s) contained therein is carried out in the IRTlib Editor.
Changes are always saved within the IRTlib Editor when the disc symbol at the bottom right is clicked.
During the preparation of a study, the changes are saved if they are to be applied. But once the prepa-
ration is completed, changes should no longer be possible or at least be tracked so that the version in
the IRTlib Editor corresponds to the version in the IRTlib Player.

To support this process of using IRTlib Editor and IRTlib Player, the following concept has been imple-
mented. To ensure that the configuration of a Study used for data collection can be clearly identified at
all times, the configuration must be sealed before it is transferred to an IRTlib Player.

This is done in the Publish view of a study, in which the Study versions are listed. For a new study, this
view initially looks like this:

In this state, you can make changes to the settings of the Study and all contained Survey Parts.

The buttons for Validate, Download and Publish studies are greyed out because no revision is selected.
The buttons can be activated by clicking on the line with the unpublished revision 1:

66

Before you continue, please check that you have thought of everything. Use the following checklist to
do this.

7.1 Checklist before publishing

• Is the login configured?

To ensure that the correct study can be started after starting the IRTlib Player, a login mode
suitable for theplannedusemust be configured. The loginmode canbedefined in the Study
configuration in the Login section.

• Is a test leader menu configured?

If kiosk mode is activated in the offline IRTlib Player, it may be difficult or impossible to exit
the applicationwithout a configured test conductormenu. Key combinations andpasswords
with roles are defined in the Study configuration in the Test leader menu section.

• Are the items inserted?

The assessment content is configured in one or more survey-parts. Most CBA ItemBuilder -
tasks will be located in the Items section of a survey part.

• Are the runtime environments (Runtimes) available?

Runtimes* are configured in the Settings.

Once you have checked this checklist, you can continue as described in the next section.

7.2 Publish & Export

Theprocess to validate, publish and download study configurations is described in the embeddedhelp:

67

preparation-studies.qmd
preparation-studies.qmd
preparation-studies.qmd
preparation-parts.qmd
settings.qmd

Embedded programme help

7.2.1 Publish

Before a Version of a Study is published, the Validate button can be used to check whether the
Study has been configured correctly.

For example, a Study must always contain at least one Survey Part definition If this is not the case,
the following message appears when validating:

Note: If no errors are found during Validation, no further message is displayed and the study can
be published.
If there are no more errors and the Study is to be prepared for export, a Version can be created.
The following button is used for this purpose:

The following dialogue then appears:

Data can be collected with an IRTlib Player if a published study has been downloaded from the IRTlib
Editor as a ZIP archive.

68

8 Datenerhebung: In IRTlib Player Importieren /
Data Collection: Import into IRTlib Player

8.1 Import Configuration

The following describes how to use a study configuration created with an IRTlib Editor that is available
as a ZIP archive.

Published version required

A published version of a Study is required for data collection with an IRTlib Player.

If a sealed study configuration has been exported from the IRTlib Editor, it can be integrated into an
IRTlib Player.

Two options are currently supported:

• Automatic import from ZIP archive
• Manual import from ZIP archive

The automatic import is only possible for the first Study in an IRTlib Player. If several Studies are to be
used in parallel in an IRTlib Player, amanual import must be configured.

8.1.1 Automatic Import

For an automatic import of a Study available as a ZIP archive in an offline IRTlib Player, the player can
first be started via the executable file TestApp.Player.Desktop.exe.

If this IRTlib Player has not yet been configured with a Study (i.e. the player has been downloaded di-
rectly from the Github repository as described under Download, for example), the following dialogue
appears:

The ZIP archive can be opened directly by clicking the Deploy Study button. It is then automatically
inserted into the IRTlib Player and can be used in the way configured in the Login section of the Study.

69

https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases
download.qmd
preparation-studies.qmd

8.1.2 Manual Import

If no automatic import is possible or desired, the contents of the ZIP archive of a Study can also be
integrated manually into the directory of the IRTlib Player provided for this purpose.

Each ZIP archive with a study configuration exported from the IRTlib Editor contains three directories.
The ZIP archives {StudyName.zip} can be opened with theWindows Explorer, for example:

To integrate the Study into an IRTlib Player, the contents of these three directories can now be inte-
grated into the programme directory of an offline IRTlib Player, for example.

Step Description

1. Unzip the player (TestApp.Player.zip). This can be done usingWindows Explorer, for
example:

2. Navigate to the unzipped directory:

70

Step Description

3. Create a new folder Contentwithin the player folder (i.e. TestApp.Player/Content/). If a
Study is already configured, then the Content folder already exists.

4. Copy the three folders ItemPool, Runtime and Studies from the downloaded study
{StudyName.zip} into the Content folder of the player.

71

Step Description

5. Start the file TestApp.Player.Desktop.exe
6. If necessary, accept the following warning:

The import of studies into an online IRTlib Player is analogous to the procedure described here. For this,
access to the volume /app/Content defined in the docker-compse.yml file is required for prepara-
tion.

8.2 Configure deliveries

The study configurations created with an IRTlib Editor can be used with different variants of the IRTlib
Player.

Three versions are currently available:

• Desktop version (Windows)
• Local server version (Windows)

72

https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/docker-compose.yml

• Online version (Docker)

8.2.1 Desktop version (Windows)

Basic configurations of the IRTlib Player (display in windowed mode vs. full screen mode) are part of
the study configuration. Only studies with the same display settings can be used simultaneously in an
offline IRTlib Player. Multiple copies of an offline IRTlib Player on one computer are possible.

To start the (offline) IRTlib Player on a computer, the executable file TestApp.Player.Desktop.exe
must be started.

Data Storage: The data collected during a data collection with the offline IRTlib Player is stored locally
in a directory. The directory and the file name for the raw data storage are configured in the Study and
can be customised using startup parameters. The user nameor theUUID created is used as thefile name
of the raw data archive. If the user name is used more than once in an (offline) IRTlib Player, i.e. if a raw
data archive with this file name already exists when the IRTlib Player is closed, it is not overwritten but
a suffix is added (e.g. PersonIdentifier_1.zip).

Startup Parameter: The integration of the offline IRTlib Player into programmed processes is
possible. Login data (user name, user name + password, token) that are configured in a Study can
be transferred as so-called startup parameters. These parameters are then appended to the call of
TestApp.Player.Desktop.exe.

Example:

TestApp.Player.Desktop.exe /RawDataFolder="..\\myDataFolder"

Valid startup parameters are:

• /AutoLoginCreateWithTest="{StudyName}": Requests the administration of the study
named {StudyName}.

• /AutoLoginUserName="{PersonIdentifier}": Passes the login information{PersonIdentifier}
as the user name.

• /MyBlocklyVariable="123": Passes thevalue123 for theBlockly variableMyBlocklyVariable.
• /MonitoringFile="..\\last-run.json": Path and file name of the so-calledmonitoring file.
• /RawDataFolder="..\\myDataFolder": Path to the directory in which the raw data archives
are saved.

• /volume="0.5": Value to be used to set the system volume (between 0 and 1).
• /minvolume="0.2": Value to be used as the lower volume threshold (between 0 and 1).
• /maxvolume="0.8": Value to be used as the upper volume threshold (between 0 and 1).

Several startup parameters in succession are possible (separated by spaces).

Technical configurations that are not to be transferred via startup parameters can also be defined via
the file appsettings.json, which is contained in the directory TestApp.Player.

For example, the volume configurations can be made in the Chromely section:

{
...
"Chromely": {
...
"Audio": {

"MinVolume": 0,
"MaxVolume": 1,
"StartVolume": 0.5

}
}

73

https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/TestApp.Player/appsettings.json

}

Checking Prerequisites: The IRTlib Player should be able to run onWindows computers (currently sup-
ported fromWindows 10) without further installation or runtime requirements. However, special con-
figurations, virus scanners etc. may prevent it from running. A tool for checking prerequisites can be
created, for example, based on this example (IRTlibReadiness).

Important note

The provided Windows version of the IRTlib Player enables a simple kiosk mode, which is only
intended for computers with only one screen (e.g. notebooks). For an exam-safe kiosk solution,
the offline version of the IRTlib Player can be combined as a local server with additional software
(such as the Safe Exam Browser).

8.2.2 Local server (Windows)

The ZIP archives of the offline IRTlib Player available via the Github repository in the Releases
section also contain a local server version parallel to the application with integrated browser
(TestApp.Player.Desktop.exe), which canbe startedvia theexecutablefileTestApp.Player.Server.exe.

Important note

The versionTestApp.Player.Server.exe is intended for offline operation in bring-in networks,
e.g., when WLAN routers and server notebooks are brought into schools. This version is not in-
tended for online use (for which the Docker version is provided).

8.2.3 Online version (Docker)

Integration: To carry out data collection, theDocker imageof the IRTlib Player should only be accessible
via https-secured connections. This can be realised, for example, using an additional nginx configured
as a reverse proxy.

Access to Editor: Unauthorised persons who are not involved in study preparation must not be able to
access the IRTlib Editor. The Github repository provides IRTlib Editor and IRTlib Player. For operational
data collection, it is not necessary to run the IRTlib Editor online, as the study preparation can also be
created with the offline version of the IRTlib Editor. If the IRTlib Editor is hosted online, it must be
protected against unauthorised access.

Access to directories: The item contents that are configured for an assessment are stored in the vol-
umes /app/Content (IRTlib Player) and /app/data (IRTlib Editor) defined in the docker-compse.yml
file. To ensure the protection of instruments, unauthorised persons must not be able to access these
volumes.

Data storage: The data collected during a data collection with the online IRTlib Player is stored in the
volume app/result. They can be retrieved from there as directories (one directory per session) or as
raw data archives via an API (if an API key is defined).

Note

When using Docker containers, assessment content and data can be accessed online. Assessment
content is only protected via the login mode defined in the study configuration. Personal data and
assessment content may also be accessible if an API key is defined.

74

https://github.com/kroehne/IRTlibReadiness
https://safeexambrowser.org/
https://github.com/DIPFtba/IRTlibDeploymentSoftware/releases
https://github.com/DIPFtba/IRTlibDeploymentSoftware/
https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/docker-compose.yml
https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/docker-compose.yml

Configuration of the player: The file appsettings.json, which is contained in the TestApp.Player
directory, is central to the technical configurationof theplayer. ThreedifferentAPI keys (i.e. access keys)
can be stored in this file by storing them in the following JSON structure before the Docker container is
started:

"API": {
"ExternalExportKey": "",
"DevelopmentKey": "",
"LoginManagementKeys": []

}

The API keys have the following functions:

• ExternalExportKey: This key is used to gain access to the data collected with the IRTlib Player.
The data can be accessed via the R package LogFSM, for example, as described in the sectionData
retrieval.

Routes for direct access

The list of the processed session, i.e. the session identifiers, can be retrieved as JSON with an API
key for ExternalExportKey via the following call:
https://{U}/{S}/api/session/?apiKey={K}

• {U} is the URL of the IRTlib Player
• {S} is the identifier of the study
• {K} is the ExternalExportKey as defined in the appsettings.json

With a known Session-Identifier the raw data can then be retrieved via the following call with an
API-Key for ExternalExportKey:
https://{U}/{S}/api/session/{ID}/result?apiKey={K}

• {ID} is the Session-Identifier (e.g. the user name, depending on the configuration of the
login)

• DevelopmentKey: This API-Key is intended for customising study configurations in a running
player.

Under Development

This function is currently under development.

• LoginManagementKeys: This list of API-Keys is intended for customising login data (accounts) in
a running player.

Under Development

This function is currently under development.

Monitoring: (A method for monitoring Docker containers is under development).

8.3 Testing and Releasing Deliveries

With the integrationof a study configuration into an IRTlib Player, thepreparation is not yet complete. Be-
fore data collection can be started with the IRTlib software, the following tests should be conducted:

75

https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/TestApp.Player/appsettings.json
http://www.logfsm.com

(Testswithin the CBA ItemBuilder-Preview): Before configuring a study and a survey sectionwith CBA
ItemBuilder -tasks, it should already have been tested in terms of presentation, functionality and scoring
in the Preview of the CBA ItemBuilder.

Functional tests: Especially if CBA ItemBuilder -tasks interact with the delivery platform (such as login
items), functional tests (i.e. tests of specific functions) should be carried out in the delivery software.
This also applies to navigation between items and, of course, the flow control configured in the delivery
environment.

Cross-browser testing: If studies are not conducted with the offline IRTlib Player (which comes with
its own browser) and especially if newly or specifically programmed JavaScript/HTML5 content is used
within the CBA ItemBuilder -Tasks via so-called *ExternalPageFrames (i.e. iframes), testing should be
carried out in different browsers.

Performance tests: If largemedia files (videos, audio files) are included in the CBA ItemBuilder -Tasks, it
may be advisable to test the feasibility of the assessment even under unfavourable network conditions
(e.g. low bandwidth, long latencies, connection drops, etc.).

Load tests: If a large number of test participants are to be tested in parallel (online), it may be advisable
to coordinate the loadbehaviourof thedelivery (and, for example, the resources available for theDocker
container) in advance.

Data storage check: In any case, the fit of the scoring definition within the CBA ItemBuilder -Tasks and
the configuration in the IRTlib Editor should be checked and a data storage check made. This means
that synthetic click patterns (i.e. responses) are entered before the start of the survey and compared
with the responses stored in the data set. In order to be able to easily recognise input errors during the
subsequent check, it has proven useful to record screen videos in parallel for the data storage check.

Smoke test: The final form of testing is a run-through test in the fully configured setting from Study
in an IRTlib Player. The survey should be displayed correctly and a readable raw data archive should be
created.

8.3.1 Suggested Test Plans

Note

The provision of the free research software IRTlib Editor and IRTlib Player is without guarantee
and no liability can be accepted for missing data, data loss or compromised data etc.

Generally valid recommendations for (absolutely) necessary tests are difficult to formulate, the follow-
ing table is therefore to be understood as a non-binding recommendation, which must be weighed up
in each specific case.

Test RecommendationCondition

CBA
ItemBuilder -Preview

Always (Errors in presentation, behaviour and scoring that can already
be found during item creation should be systematically tested
and excluded before creating a study configuration).

Functional tests If required Only if IRTlib Player and CBA ItemBuilder -Tasks have to
interact and in relation to functionality defined in the IRTlib
Editor (e.g. response-dependent branching).

Cross-browser
testing

If required Only if IRTlib Player is used online and the browsers do not
correspond to the browsers already used for the CBA
ItemBuilder -Preview.

Performance tests If required If large multimedia parts are included or if a poor network
connection is to be expected.

76

Test RecommendationCondition

Load tests If required Only if online IRTlib Player is to be administered with many
parallel tests.

Data storage check Always Check all data (incl. log data if this is required for evaluation).
Smoke test Always Smoke test for every version, especially to rule out accidental

configuration errors at the last minute.

8.3.2 Carry out Data Collections

Once the Study has been configured and tested in an IRTlib Player, data can be collected. The longer the
field time, the more important it is to regularly back up the collected data or to regularly remove the
collected raw data archives from the survey hardware.

77

9 Datenerhebung: Datenaufbereitung / Data
Collection: Data Post-Processing

9.1 Data Preparation

Data is saved by the IRTlib Player in raw data archives per session (i.e. per test run with a Study). The raw
data archives are ZIP archives whose file names correspond to the user name or the Universally Unique
Identifier (UUID). Deviations from this scheme are possible if a raw data archive with this file name al-
ready existed at the time of saving. In this case, the data is not overwritten by the IRTlib Player, but a
suffix _1, _2, … is appended until the file name can be used.

• Offline IRTlib Player: If not configured otherwise, the results data are saved in the directory
Temp/{Study-Name}/Results. The raw data archives are created when a session is ended,
i.e. the last defined CBA ItemBuilder -Task is exited with NEXT_TASK. It is no longer possible to
continue the session that has been started, as may be necessary for instance in the event of a
computer crash, after the raw data archives have been created.

The same applies if the offline version of the IRTlib Player is used as a local server. The raw
data archives are saved in the Temp/{Study name}/Results directory after test process-
ing.

The collection of data from the offline IRTlib Players corresponds to the collection of the
raw data archives that are collected on the various devices.

Note

As the offline IRTlib Players are not connected to each other, identical login data can be created
in parallel in different IRTlib Players, depending on the login mode. After data collection, the raw
data archives must therefore be merged with care and, if necessary, separated by subfolders.

• Online IRTlib Player: Unless configured otherwise, the online player collects the data in the
volume that is configured for the results data (see /app/results in docker-compse.yml file).
Each session is stored there in a separate subdirectory and can be downloaded by administrators
who have access to the volume (!).

If an API-key is defined for data access, the download of the result data can also be carried out via the
R package LogFSM.

9.1.1 Data retrieval with LogFSM

To do this, the R package can first be installed (once) with the following call:

source("http://logfsm.com/latest")

The raw data archives can then be downloaded using the following R script:

78

https://github.com/DIPFtba/IRTlibDeploymentSoftware/blob/main/docker/docker-compose.yml
http://logfsm.com

library(LogFSM)

if (!dir.exists(paste0(getwd(),"/in/")))
dir.create(paste0(getwd(),"/in/"))

if (!dir.exists(paste0(getwd(),"/out/")))
dir.create(paste0(getwd(),"/out/"))

SECRET_KEY <- "(your secret key)"
API_URL <- "(your API-URL)"

LogFSM::TransformToUniversalLogFormat(inputfolders = paste0(getwd(),"/in/"),
inputformat = "irtlibv01a",
zcsvoutput = paste0(getwd(),"/out/data_csv.zip"),
stataoutput = paste0(getwd(),"/out/data_dta.zip"),
spssoutput = paste0(getwd(),"/out/data_sav.zip"),
key = SECRET_KEY,
web = API_URL,
outputtimestampformatstring="dd.MM.yyyy HH:mm:ss.fff")

results <- read.csv(unz(paste0(getwd(),"/out/data_csv.zip"), "Results.csv"),
sep=";", encoding = "UTF-8")

Data retrieval and conversion of the data with LogFSM

By calling the function TransformToUniversalLogFormat from the package LogFSM, the data is
downloaded and stored in the specified directory infolders if an API key (key) and an API url (web)
are passed.

Note on SECRET_KEY and API_URL

The value for SECRET_KEY must correspond to the entry that was defined as
ExternalExportKey in the appsettings.json when configuring the Docker image, see
section Online-Version (Docker).
The value for the API_URL is formed according to the following scheme:
https://{U}/{S}/api/session/

• {U} is the URL of the IRTlib Player
• {S} is the identifier of the study

The function TransformToUniversalLogFormat from the package LogFSM (or analogue to the com-
mand line tool described below) can also be used to read out already existing local raw data archives.

9.1.2 Data Retrieval via the Command Line

The application TransformToUniversalLogFormat used for data retrieval and data conversion via
LogFSM is available as a console application fromtheReleases sectionofhttps://github.com/kroehne/LogFSM/.

Data retrieval and data transformation can also be performed without R.

In development

A certified version of TransformToUniversalLogFormat for Apple is currently under develop-
ment.

79

https://github.com/kroehne/LogFSM/releases

9.1.3 Result Data

If the data was retrieved via LogFSM from an online IRTlib Player or collected offline, it is stored in a
directory at the end. Per session (i.e. per person or person x time) as a raw data archive.

The function TransformToUniversalLogFormat in LogFSM or via the command line can also be used
to read the raw data archives from a directory and extract the result data:

library(LogFSM)

if (!dir.exists(paste0(getwd(),"/out/")))
dir.create(paste0(getwd(),"/out/"))

LogFSM::TransformToUniversalLogFormat(inputfolders = paste0(getwd(),"/in/"),
inputformat = "irtlibv01a",
zcsvoutput = paste0(getwd(),"/out/data_csv.zip"),
stataoutput = paste0(getwd(),"/out/data_dta.zip"),
spssoutput = paste0(getwd(),"/out/data_sav.zip"),
outputtimestampformatstring="dd.MM.yyyy HH:mm:ss.fff")

results <- read.csv(unz(paste0(getwd(),"/out/data_csv.zip"), "Results.csv"),
sep=";", encoding = "UTF-8")

9.1.4 Log Data

Converting the data with TransformToUniversalLogFormat in LogFSM or via the command line con-
verts the collected log data, which is provided by the CBA ItemBuilder -Tasks, into the following for-
mats:

• Flat and Sparse Log-Data Table: A large table (as CSV, Stata, SPSS) with one row per event. As
the event-specific attributes (i.e. the various additional information available from an event) are
distributed across many columns, which are only filled for each event type, this table is flat, but
can also be very holey.

• Universal log format : Alternatively, the ZIP archives created by LogFSM or the command line tool
TransformToUniversalLogFormat also contain individual data record tables for each event
type. The event-specific attributes in these tables are less holey (i.e. they only contain missing
values for optional attributes) and can be combined into a Flat and Sparse Log-Data Table if re-
quired.

• XES (eXtensible Event Stream): The log data can also be converted to the standardised XML format
(https://xes-standard.org/).

Note on timestamps

The timestamps collected with the IRTlib software are in UTC format (Coordinated Universal Time).

9.1.5 Files in the raw data archives

The raw data archives contain the following files:

• Trace.json: Log data (Traces) as supplied by the CBA ItemBuilder -Runtime, together with the
context from the IRTlib Player.

80

https://xes-standard.org/

The file contains the following structure, separated by commas. The file is not a valid JSON
until the last comma is removed and a [before and a] after the content is inserted.

The entry Trace contains the log data (Traces) in packets (as supplied by the CBA Item-
Builder -Runtime) quoted (i.e. " is displayed as \u0022). The TraceId is a counter which
counts the transmittedpackets. Timestamp is the timestampof the transmission. SessionId
is the user name or the UUID (PersonIdentifier). The Context provides a reference to the
assessment content (Element) via the name of the CBA ItemBuilder project, Task and Scope.
The informationon the IRTlib Player used is storedunderAssemblies andStudyRevision
refers to the Revision of a (published) Study.

{
"Trace": "(TRACE-JSON)",
"TraceId": 1,
"Timestamp": "2023-12-04T20:53:06.297Z",
"SessionId": "(SESSION-ID OR USERNAME)",
"Context": {

"Item": "(PROJECT NAME)",
"Task": "(TASK NAME)",
"Scope": "(SCOPE)",
"Preview": ""

},
"Assemblies": [

{
"Name": "TestApp.Player.Desktop",
"Version": "(APPLICATION VERSION)",
"GitHash": "(APPLICATION BUILD HASH)"

}
],
"StudyRevision": "(STUDY REVISION)"

},

• Snapshot.json: Snapshot data as supplied by the CBA ItemBuilder -Runtime, together with the
context from the IRTlib Player.

The file contains the following structure, separated by commas. The file is not a valid JSON
until the last comma is removed and a [before and a] after the content is inserted.

TheSnapshotentry contains the snapshot information (as supplied by theCBA ItemBuilder -
Runtime) quoted (i.e. " is displayed as \u0022). The ContextFlag indicates how the CBA
ItemBuilder -Task was exited (NextTask, PreviousTask or Cancel). Timestamp is the times-
tamp of the transmission. SessionId is the user name or the UUID (PersonIdentifier). The
Contextprovides a reference to the assessment content (Element) via the nameof theCBA
ItemBuilder project, Task and Scope. The information on the IRTlib Player used is stored un-
der Assemblies and StudyRevision refers to the Revision of a (published) Study.

{
"Snapshot": "(SNAPSHOT-JSON)",
"ContextFlag": "NextTask",
"ContextScope": 0,
"Timestamp": "2023-12-04T20:53:06.497Z",
"SessionId": "(SESSION-ID OR USERNAME)",
"Context": {

"Item": "(PROJECT NAME)",
"Task": "(TASK NAME)",

81

"Scope": "(SCOPE)",
"Preview": ""

},
"Assemblies": null,
"StudyRevision": null

},

• ItemScore.json: Scoring information (as supplied by CBA ItemBuilder -Runtime).

The file contains the following structure, separated by a comma. The file is not a valid JSON
until the last comma is removed and a [before and a] after the content is inserted.

The ItemScore entry contains the ItemScore (as supplied by the CBA ItemBuilder -Runtime)
quoted (i.e. " is displayed as \u0022).The ContextFlag specifies how the CBA ItemBuilder -
Task was exited (NextTask, PreviousTask or Cancel). Timestamp is the timestamp of the
transmission. SessionId is the user name or the UUID (PersonIdentifier). The Context
provides a reference to the assessment content (Element) via the name of the CBA Item-
Builder project, Task and Scope. The information on the IRTlib Player used is stored under
Assemblies and StudyRevision refers to the Revision of a (published) Study.

{
"ItemScore": "(SCORING-JSON)",
"ContextFlag": "NextTask",
"ContextScope": 0,
"Timestamp": "2023-12-04T20:53:06.474Z",
"SessionId": "(SESSION-ID OR USERNAME)",
"Context": {

"Item": "(PROJECT NAME)",
"Task": "(TASK NAME)",
"Scope": "(SCOPE)",
"Preview": ""

},
"Assemblies": [

{
"Name": "TestApp.Player.Desktop",
"Version": "(APPLICATION VERSION)",
"GitHash": "(APPLICATION BUILD HASH)"

}
],
"StudyRevision": "(STUDY REVISION)"

},

• Session.json: The file contains data of the IRTlib Player, which describe the execution of the
Session.

• Log.json: Log events of the IRTlib Player (contains log information for processing the Blockly
routing).

• browser.log: Console output collected during the processing of tasks in the browser (unstruc-
tured text, for developers).

• server.log: Log output from the server of the IRTlib Player (unstructured text, for developers)
• Keyboard.json: Keyboard input and timestamps.
• Monitoring.json: Copy of the monitoring file that was created.

82

Part III

Allgemein / General

83

10 Einstellungen / Settings

The IRTlib Editor has a small number of settings.The language can be set to German or English.

10.1 Overview

The IRTlib software is currently still under development. Information about the current version (and for
Preview versions about the build hash) can be found in the section About the Program.

Embedded Help

10.1.1 Settings

In this section, settings can be made that affect working with the IRTlib Editor and all studies.

10.1.1.1 Runtime Management

To configure studies that use CBA ItemBuilder content with the IRTLib Editor, the appropriate
runtime environment (Runtime) is required for each version. Current tested versions of the CBA
ItemBuilder runtime are already stored in the Editor, but runtimes for other versions of the CBA
ItemBuilder or updated or corrected runtimes can also be imported into the Editor in this section.
Runtimes that are available in the Editor are automatically integrated as part of the study config-
uration when studies are published and are thus available to the IRTLib Player.

10.1.1.2 General Settings

Change the language for the editor in this section. The setting selected here has no influence on
the language of the assessment content in the configured studies.

10.1.2 About the Programme

Under the Version info button, you will find a summary of the latest changes and information on
the current programme version.

10.2 Runtimes

The IRTlib Software can be used with CBA ItemBuilder tasks of different CBA ItemBuilder versions. The
required Runtime (i.e., the connection between the CBA ItemBuilder tasks and the IRTlib Software) is
part of the study configuration so that the IRTlib Player knows for sure how to use CBA ItemBuilder
tasks of a particular version.

Embedded Help

10.2.1 Runtimes

To configure Studies that use CBA ItemBuilder content with the IRTLib Editor, the appropriate run-
time environment (Runtime) is required for each version. Current tested versions of the CBA Item-

84

Builder runtime are already stored in the IRTLib Editor, but runtimes for other versions of the CBA
ItemBuilder or updated or corrected runtimes can also be imported into the IRTLib Editor in this
section.

10.2.1.1 Check CBA ItemBuilder Version

It is important to knowwhich version of the CBA ItemBuilder was used to create the items (i.e. the
CBA ItemBuilder project files). If in doubt, this information can be found in the About dialogue of
the CBA ItemBuilder, for example:

• Step 1: Open the “About” dialogue via the “Help” menu

• Step 2: Search for the version number in the dialogue (here 9.9.0)

The version number must be listed as one of the cards in the Settings of the IRTlib Editor in the
Runtimes section:

10.2.1.2 Import runtime files

If the corresponding runtime is not already included in the Editor, a new/additional runtime can be
imported. Study configurations that are created/edited with the IRTlib Editor can contain several
Runtimes for different versions.

85

• Step 1: To integrate a runtime, a JavaScript and a CSS file are required. These files can be
downloaded here:

https://cba.itembuilder.de/appendix-tables.html#previous-versions

• Step 2: Unzip the downloaded Runtime to be used.

• Step 3: Navigate to the Runtimes section:

• Step 4: Press the “+” button (bottom right)

• Step 5: Enter the version number with three digits (e.g. 9.9.0):

• Step 6: Select the file main.*.js from the ZIP archive containing the runtime environ-
ment. Note that the * corresponds to the hash of the file (i.e. the full file name looks like
main.19479ac3.js)

• Step 7: Select the file main.*.css from the ZIP archive containing the runtime.
Note that the * corresponds to the hash of the file (i.e. the full file name looks like
main.b765ceca.css)

Note: The Description field and the two additional Map files (for JavaScript Source
and for CSS Source) are optional.

• Step 8: Press the Save button to finalise the import of the Runtime:

86

After the import, the supported CBA ItemBuilder versions are listed in the Runtime section. To
delete a Runtime for a specific version, click on the Trash icon at the bottom right of the “Map”
and confirm with Delete.

87

11 Github Repositorien / Github Repositories

11.1 IRTLib Software

The IRTlib Software is free research software in the sense of Open Science. It can be used for non-
commercial applications.

Suggested Citation:

Kroehne, U. (2023). IRTlib Documentation: Software for the administration and delivery
of computer-based assessments [IRTlib Dokumentation: Software für die Verwaltung
und Auslieferung computergestützter Assessments]. DIPF, Frankfurt am Main, Germany.
https://doi.org/10.5281/zenodo.10441352

Note

Translation: If you want to help us translate this software, you can find more information here.

11.1.1 Download

• Current versions of the IRTlib software (Windows and Docker): GitHub
• Documentation: GitHub

11.2 CBA ItemBuilder

The IRTlib software allows the administration of assessment content created with the CBA Item-
Builder.

11.2.1 Download

• Current versions of the CBA ItemBuilder (Windows): https://www.itembuilder.de/software

11.2.2 Source Code

Source code and material for the CBA ItemBuilder are divided into several repositories:

• CBA ItemBuilder (desktop application): GitHub (In preparation / still private)
• Runtime environment: GitHub (In preparation / still private)
• Execution environment for developers: GitHub (In preparation / still private)
• Technical documentation: GitHub (In preparation / still private)
• Technical example items: GitHub(In preparation / still private)

88

translation.qmd
https://github.com/DIPFtba/IRTlibDeploymentSoftware
https://github.com/kroehne/IRTLibDocumentation
https://www.itembuilder.de/software
https://github.com/DIPFtba/CBAItemBuilderDesktopEditor
https://github.com/DIPFtba/CBAItemBuilderRuntime
https://github.com/DIPFtba/CBAItemBuilderExecutionEnvironment
https://github.com/DIPFtba/CBAItemBuilderDocumentation
https://github.com/DIPFtba/CBAItemBuilderExampleItems

11.2.3 Documentation

Online documentation

• HTML (interactive): https://cba.itembuilder.de

• PDF (static): Open-Assessments-with-CBA-ItemBuilder.pdf
• Sources GitHub (In preparation / still private)

Suggested Citation:

Kroehne, U. (2023). Open Computer-based Assessment with the CBA ItemBuilder. DIPF,
Frankfurt am Main, Germany. https://doi.org/10.5281/zenodo.10359757

89

https://cba.itembuilder.de
https://cba.itembuilder.de/Open-Assessments-with-CBA-ItemBuilder.pdf
https://github.com/kroehne/CBAItemBuilderBook

12 Über / About

12.1 Acknowledgements

Contributors to this manual were:

• Maximilian Sattler
• Carla Burkart

In development

• Revision, language correction and translation of the manual are currently in progress…

12.2 Development

The development of the IRTlib Software takes place at Software-Driven.

90

https://software-driven.de/

	IRTlib Software
	Download & Installation
	Offline (Windows)
	Study Preparation with Offline Editor
	Study Execution with Offline Player

	Online (Docker)

	Vorbereitung / Preparation
	Vorbereitung: Übersicht / Preparation: Overview
	Embedded Programme Help
	Preparation of CBA ItemBuilder Content
	Entry Point (Task)
	Display Bhaviour (Scaling Options)
	Definition of the Scoring (Results Data)
	Integrated Multimedia Content (Resources)

	Vorbereitung Studien / Preparation Studies
	Study administration
	Creating Studies
	Further functions and notes

	Basic configurations
	Settings for the Study

	Access to studies (login)
	Configuration of the login

	Display of assessment content
	Display Settings
	Scaling and Alignment

	Menu for test administrators
	Concept of a Test Administrator Menu (Menu for Test Administrators)

	Completion of surveys
	Session and End of Session

	Vorbereitung: Erhebungsteile / Preparation: Study Parts
	Survey part administration
	Create Survey Part
	Basic Configuration for Survey Parts

	Insert assessment content (items)
	Configure items

	Processing time
	Define Time Limit
	Items After a Time Limit
	Items Before a Time Limit

	Variables
	Codebook
	ItemPool
	Routing within survey parts
	Summary of Routing within Survey Parts
	Use of Blockly for flow control
	Advanced Blockly usage
	Commenting on Blockly code
	Presentation of Blockly code

	Routing between survey parts
	Summary of Routing between Survey Parts

	Datenerhebung / Data Collection
	Datenerhebung: Übersicht / Data Collection: Overview
	Overview: Steps for using an IRTlib Player for Data Collections

	Datenerhebung: Veröffentlichen & Exportieren / Data Collection: Publish & Export
	Checklist before publishing
	Publish & Export
	Publish

	Datenerhebung: In IRTlib Player Importieren / Data Collection: Import into IRTlib Player
	Import Configuration
	Automatic Import
	Manual Import

	Configure deliveries
	Desktop version (Windows)
	Local server (Windows)
	Online version (Docker)

	Testing and Releasing Deliveries
	Suggested Test Plans
	Carry out Data Collections

	Datenerhebung: Datenaufbereitung / Data Collection: Data Post-Processing
	Data Preparation
	Data retrieval with LogFSM
	Data Retrieval via the Command Line
	Result Data
	Log Data
	Files in the raw data archives

	Allgemein / General
	Einstellungen / Settings
	Overview
	Settings
	About the Programme

	Runtimes
	Runtimes

	Github Repositorien / Github Repositories
	IRTLib Software
	Download

	CBA ItemBuilder
	Download
	Source Code
	Documentation

	Über / About
	Acknowledgements
	Development

